Les fichiers Dicom

La numérisation des données d'imagerie médicale

Pourquoi utiliser de l'information numérisée et normalisée en imagerie médicale ?

- Tirage des clichés argentiques plus indispensable et diminue les coûts d'une radiographie.
- Suivi médical des patients nécessite souvent le transfert d'un établissement de santé à un autre en fonction des moyens et compétences disponibles
 - => problème de relecture des données si matériels incompatibles
 - => Transport des clichés (envois par courrier par exemple)
- Faciliter les transferts d'images entre les machines de différents constructeurs.
- => problème des formats de données propriétaires entrainant d'importants problèmes de gestion et de maintenance (incompatibilités, coût, perte d'information).

DICOM = "Digital Imaging and Communication in Medicine"

DICOM est une norme :

Utilisée par la plupart les fabricants de matériel d'imagerie médicale.

- Le format des fichiers Dicom dépend de cette norme.
- Assure la communication des différents équipements d'imagerie médicale numérique.
- => interconnection des appareils : locale, à distance ou intermédiaire pour assurer la compatibilité entre différents formats propriétaires
- => interoperabilité (=inter-action) : données transférées identiques (images+données patient)

La norme suit des directives strictes établies par le comité ISO.

Ce format est surtout utilisé en radiologie mais aussi adopté par les cardiologues , les dentistes, les anatomopathologistes et les gastro-entérologues...

DICOM, format le plus répandu mais pas universel

La norme DICOM a été émise par l' ACR (American College of Radiology) en association avec la NEMA (National Electrical Manufacturers Association)

Actuellement mise à jour par ces 2 comités auxquelles se sont joints d'autres comités d'experts internationaux tels le JRIA au japon, l'ANSI aux USA, le CENTC251 en europe.

Mais la norme n'est pas universelle!

- => Problème d'équipements anciens ne sont pas toujours à la norme DICOM.
- => Problèmes d'interopérabilité entre les différentes machines Dicom elles-mêmes :
- → impossible d'extraire les fichiers : (pas de CD/DVD, pas d'USB, etc).
- → problème de réseaux : non connectables en Ethernet et TCP/IP, protocoles propriétaires (mais rares)

Spécificité du format Dicom

Pourquoi un format spécifique (et pas du JPEG, BMP, autres formats de fichiers)?

- => non dégradation de l'image (contrairement au JPEG par exemple)
- => **métafichier** spécifique : image + données patient en un seul fichier
 - image : codées en binaire, en général non compressées
- données : nom du patient, type d'examen, hôpital, date d'examen, type d'acquisition etc...

Extension: .dc3, .dcm, .dic ou sans extension

Un format modulaire

Dicom est un format modulaire :

- informations obligatoires
- informations optionnelles

Exemple d'informations obligatoires:

Identifiants uniques (UID ="Unique Identifier") => chaque fichier créé est unique

Les UID sont générés automatiquement par la machine / PC.

Identification nécessaire :

- pour des raisons médicales et médico-légales
- pour permettre aux machines la formation et la gestion de bases de données (base de données ont toujours besoin d'identifiants uniques)

SOP Class UID	Identifie le type de Service auquel est destiné l'image.
Study Instance UID	Identifie un examen entier , en temps et lieu.
Series Instance UID	Identifie une série d'images au sein de l'examen.
SOP Instance UID ou Image UID	Identifie l'image associée au fichier.

Organisation par « objets »

Les données dans le format Dicom sont organisées comme des « objets »

- => chaque objet DICOM (représenté le plus souvent par une image) contient :
- les **informations** : les pixels de l'image + données diverses (le nom du patient, dates, etc.)
- les **méthodes** (ou fonctions) que doit subir cette information.

Exemple:

- informations : une image IRM ou scanner ... ,
- => en langage DICOM : « Information Object »
- méthodes associées : exemple « imprimer » et/ou « sauvegarder »
- => en langage DICOM : un « service »

Le « traitement DICOM » d'un objet consiste à apparier une information DICOM ou "Information Object " (par exemple une image) à un « service » à appliquer à cette information (imprimer, sauvegarder , etc..) .

La combinaison des 2 est appelée « Service/Object Pair » ou « SOP » ou « classe de parité »

La norme Dicom définit donc toutes les « parités » (ou « classes ») que l'on peut rencontrer.

Exemple de « service » ou fonctions associées aux objets Dicom

Classes de Service :	Type de Service :
Verification (Verification Service Class)	Utilisé pour les tests , permet de savoir si les machines "s'entendent" mutuellement, cette classe n'est pas associée à un objet DICOM , elle renvoie l'information sous la forme d'un écho. (C-ECHO)
Storage(Storage Service Class) Media Storage Service Class	Permet le transfert et la sauvegarde des images entre deux entités DICOM. (CR,CT,MR Storage Service Class) Il existe une variante : Media Storage Service Class qui spécifie les
	échanges entre 2 machines par l'intermédiaire d'un média (CD rom , disquettes etc)
Query/Retrieve	Implémente des commandes types : FIND, MOVE, GET . FIND permet de demander une liste d'image, MOVE et GET permettent d'initier un transfert , qui sera en réalisé effectué via la classe "Storage Service Class"
Study Contents Notification	Utilisée pour notifier l'arrivée d'une nouvelle image ou série d'images, peut être utilisée pour initier un transfert ou vérifier si le transfert d'une série d'image est complet.
Print Management	Permet la connexion avec un reprographe, spécifie le type d'image , (Couleurs, niveaux de gris etc)
Patient Management	Permet d'interfacer la machine au réseau hospitalier PACS ou HIS/RIS (Hospital Information Service/ Radiological Information Service)
	Gestion des données des patients, démographie, admission et sortie des patients
Study Management	Création , gestion de rendez-vous, suivi des examens.
Result Management	Permet la gestion des résultats des examens.

Contenu des fichiers DICOM

Un fichier Dicom est constitué de plusieurs données différentes (images, données diverses sur le patient, sur l'examen médical, etc. et les services associés).

L'organisation de l'information contenue dans les fichiers DICOM a été inspirée par la sauvegarde des données sur des bandes magnétiques. L'information est organisée sous une forme séquentielle.

C'est à dire : chaque donnée elle-même, un identifiant pour chacune de ces données et leur taille (en octets) qu'elles occupent sur le fichier.

Chaque information élémentaire est donc constituée de 3 champs de données .

- Le premier champs est codé sur 8 octets, il s'agit d'une "balise" ou "tag", répertoriée dans le dictionnaire DICOM, qui indique le type d'information qui va suivre.
- Le deuxième champs de 8 octets indique la longueur de l'information contenue dans le 3ème champs, jusqu' à la balise suivante.
- Le 3ème champs constitue les données elles-mêmes (du texte ou une image)

Quelques ressources Dicom sur le Web

Quelques visualisateurs de fichiers Dicom:

http://www.rtstudents.com/pacs/free-dicom-viewers.htm

http://www.sph.sc.edu/comd/rorden/dicom.html

http://www.cabiatl.com/mricro/dicom/index.html

http://www.idoimaging.com/index.shtml

Un visualisateur simple:

EzDicom: http://www.cabiatl.com/mricro/ezdicom/

Quelques fichiers d'exemple en Dicom :

http://www.barre.nom.fr/medical/samples/

Télécharger et installer EzDicom (fichier principal dans « Executable → StandAlone → ezdicom.exe »)

Télécharger un fichier Dicom sur http://www.barre.nom.fr/medical/samples/ Exemple, le fichier : CR-MONO1-10-chest

Ouvrir ce fichier avec EzDicom et voir image + métadonnées

Le module pydicom

Un module python pour modifier les fichiers Dicom : pyDicom

http://code.google.com/p/pydicom/

- Télécharger et installer ce module python

Exemple d'utilisation de ce module (voir la doc en ligne pour plus de détails) :

```
# importe le module python qui contient toutes les fonctions python pour manipuler le dicom
import dicom
# charge tout le fichier dans la variable plan (=objet)
plan=dicom.read file("CR-MONO1-10-chest")
# affiche une liste des variables qui contiennent les informations du fichier dicom
print plan.dir()
# affiche le contenus des variables (les « données »), les « tags » et les « espace mémoire »
print plan.dir
# affiche la date de création du fichier et le nom du patient
print plan.AcquisitionDate, plan.PatientsName
# change le nom du patient
plan.PatientsName = "Sabet Hachem"
# sauvegarde le fichier
plan.save as("test.dcm")
```

Exemple de modification de fichier Dicom en python

- Télécharger plusieurs fichiers Dicom dans un répertoire sur votre disque dur

On suppose que ces fichiers concernent un même patient.

Supposons maintenant qu'il y a eu une mauvaise manipulation (ou un oubli) au moment où ces fichiers ont été enregistrés et que le nom du patient ainsi que la date soient erronés pour tous les fichiers.

- faire un script Python qui va modifier tous ces fichiers en mettant un nom de patient unique et la date de la veille par exemple.
- * Commencer par faire une « liste » avec tous les noms des fichiers à modifier ...
- * Utiliser le module pydicom
- * Faire les modifications sur tous les fichiers
- * Vérifier avec EzDicom que les données « nom patient » et « date » ont correctement été modifiées.