
Genomes assemblies and finishing

Bioinformatics teachings

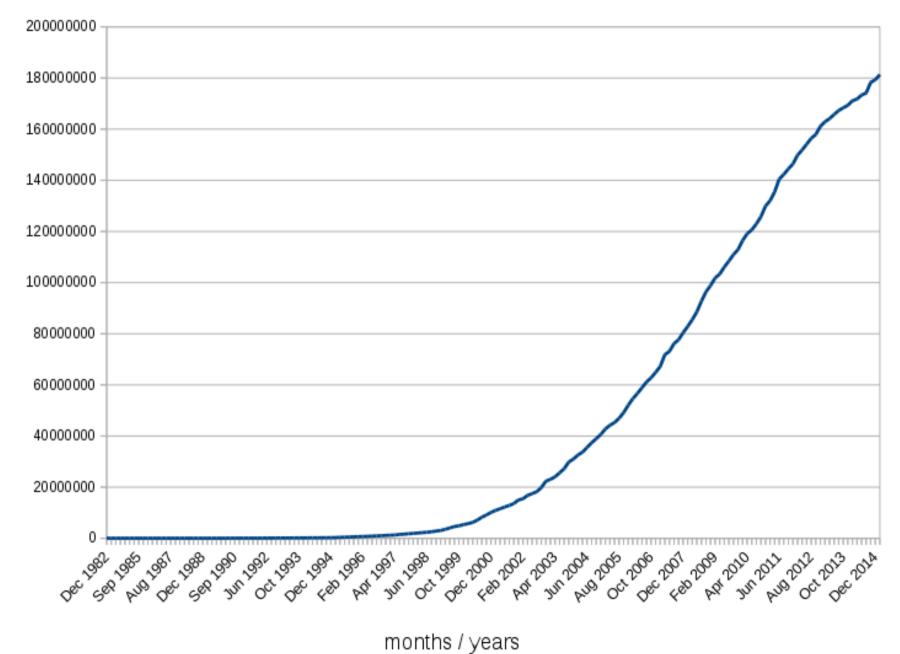
http://bioinfomed.fr - Olivier Croce -

Summary

- Submission of the sequence on public databases
- Not always => publication

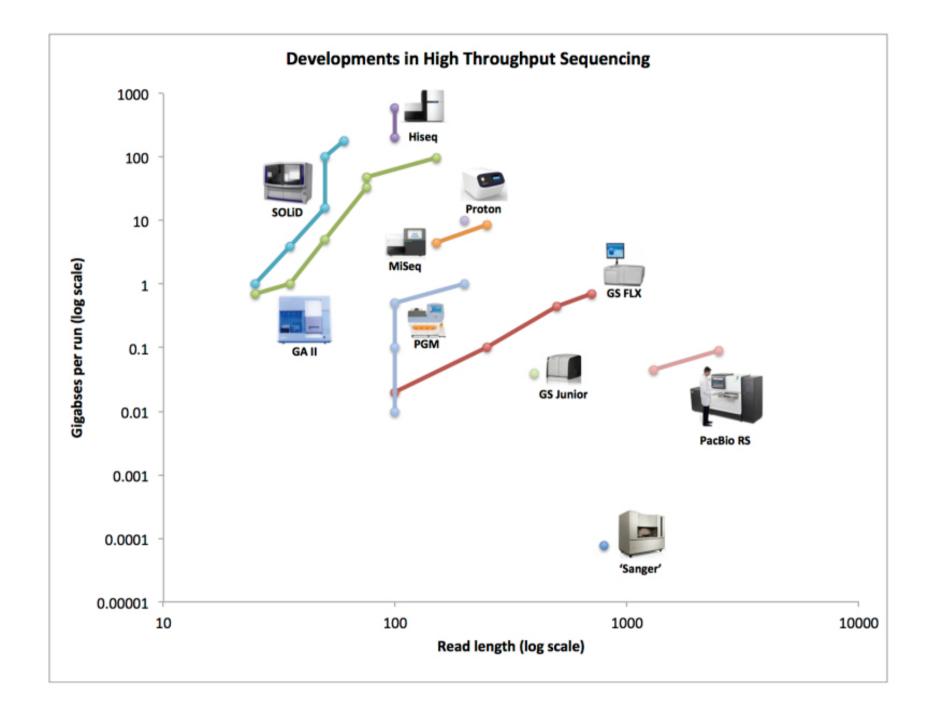
<u>3 main public databases</u>:

- EMBL-EBI ENA (European Nucleotide Archive) ** http://www.ebi.ac.uk/embl/
- GenBank (USA) NCBI ** http://www.ncbi.nlm.nih.gov/Genbank/
- DDBJ (DNA DataBank of Japon) CIB ** http://www.ddbj.nig.ac.jp/


They are associated (International Nucleotide Sequence Database Collaboration) and exchange the same data which is periodically duplicated together

Embl, Ebi, Ddbj contain:

- Sequences of DNA or RNA from various sequencers technologies and from many labs
 - * Some genome fragments : one or more genes, intergenic sequences, parts of a genome
 - * Completed genomes
 - * mRNA, tRNA, rRNA (ie. 16s)
- Annotations


Data release

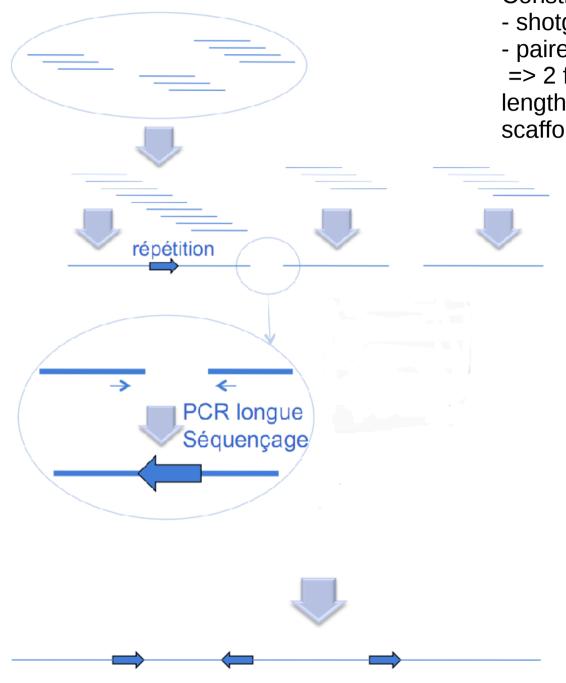
GenBank Size (GenBank.txt/gbrel.txt)

number of entries

Sequencing

2 conceptions of the sequences finishing:

- The genome sequence must be completed and with a high quality before the release.


Of course the best, but very time consuming.

Actually, 90-95 % of a microorganism genome could be easy covered without finishing, but the 5-10 % remained can take many weeks or months to be ended.

- The sequence should be uncompleted with a draft quality, whether most of the genes are sequenced and identified.

Many eukaryote genomes are only draft genomes, because of the complexity of finishing

=> In general, fundamental research usually performs high quality genomes and applicative research (industry, our lab) usually performs draft genomes

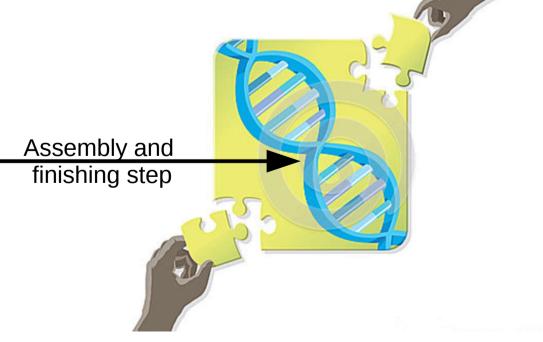
Construction of a library of genomes fragments:

- shotgun = single fragments
- paired-end (or mate-pair)

=> 2 fragments linked by an insert of a known length (~5 kb for 454 or Illumina), needed for scaffolding

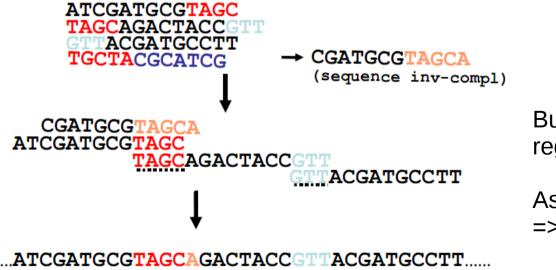
Assembly process => construction of contigs (and scaffolds) from reads

In silico finishing + PCR to fill gaps


Checking with a closed reference or using annotations

Sequencing

Sequencing step: reads have heterogeneous distribution



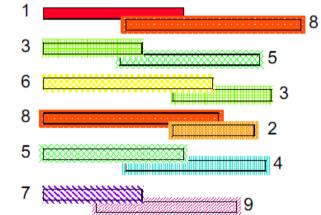
ATCGATGCGTAGCAGACTACCGTTACGATGCCTT... TAGCTACGCATCGTCTGATGGCAATGCTACGGAA...

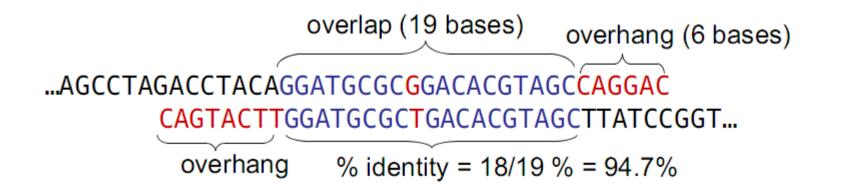
Fragmentation + sequencing => sets of reads

Build of contigs with overlapping regions

Assembly :

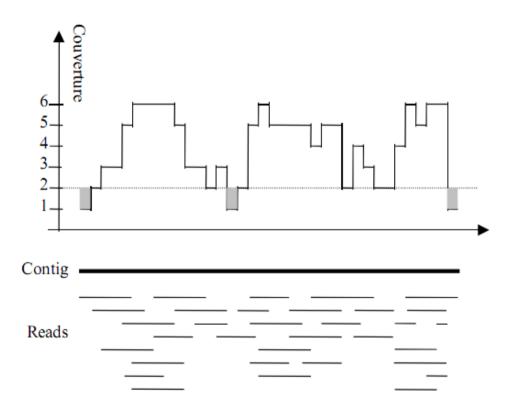
=> alignements of reads + consensus


Search for best pairings


- Compare each sequence (and its reverse complement) against every others sequence to find the best overlapping

=> list of best candidates with similarities criteria

Best candidate is a compromise between :


- maximum overlap length region of similarity between regions
- minimum overhang length unaligned ends of the sequences
- maximum % identity in overlap region
- minimum repeat length

Main remaining problems:

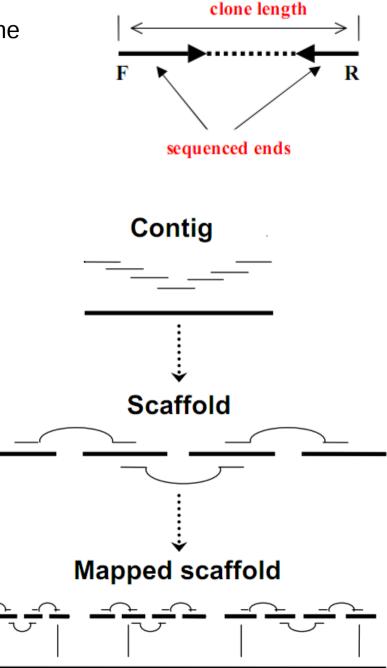
- Bad assembly of reads
- Low coverage of reads

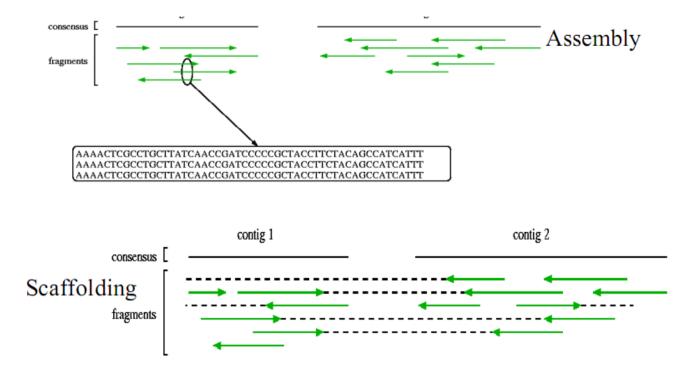
- Bad insert size estimation
- Different orientation of contigs
- Error of sequencing
- Repeat sequence ambiguities

Remap reads on a reference genome or assembled genome itself Highlighting errors, ie. sequencing error or SNP, show coverage

EagleView					
<u>Configure</u> Preferences Help					
<< < > >> 50	25 M	TDNA-C6 5187			
2_48_792_121		=> P=33, Q=	-0 286 128 127 294		
25/5024 5050/5049		100/5099	5125/5124	5150/5149	5175/5174
	+++++1+++++++++++++++++++++++++++++++++	***!**********	******	************	***********
TTTTTGTATTACATTTTTATTGCCGTGAGCTATTCTAGTTA	TTGTATTGGGGCATTTAATTTTTTAC	ACAGAACTGGTAGAACATCTA	GGTTATATTGCCACGGTGAT	татсатааасттстттасасстса	GTACTTAGGTAAAGATGCTTATA
	ITGTATTGGGLC ITTAATTITITAC				GTACTTAGGTAAAGATGCTTAT)
TITIT GTATTACATITITTATTGCCGTGAGCTATTCTA	TATATTGGGACATTTAATTTTTTAC	ACAGAAC ATACCATCTA	GGTTATATTGCCACGGTGAT	TAT AGTGTGTTGTAGACCTGA	GTACTTAGGTAAAGA GCTTATZ
TTTT GTGAGCTATTCTAGTTA		ACAGAACTGGTAGAACAT T TA		TATGATAAAGTTTGTTTTAGACCTGA	
TTTT GTGAGATATTCTAGTTJ		ACAGAACTGGTAGAACATCTA		TATGATAAAGTTTGTTTTAGACCTGA	
	TTGTATTGGG CATTTAA			TATGATAAAGTTTGTTTTAGACCTGA	
	TTGTATTGGGACATTTA	AGAACTGGTAGACCATCTA		татсатааасттстттасасстса	
	TTGTATTGGGACATTTA			татсатааасттстттасасстса	
	TTGTATTGGGACATTTA => P=33, Q	=0	GGTTATATTGCCACGGTGAT		
	IIIGIAIIGGG GAITIA	GANGAIGIA	GGTTATATTGCCACGGAGET		
	GTATTGGGACATTTAATTTTTTAC		GGTTATATTGCCACGGTGAT		GTACTTAGGTAAAGATGCTTAT
TTTTTTG	GTATTGGGLCATTTAATTTTTTAC		GTTATATTGCCACGGTGAT		GTACTTAGGTAAAGATGCTTAT
TTTTTTG	GIATIGGG CATTIAATTTTTAC		GTTATATTGCCACGGTGAT		GTACTTAGGTAAAGATGCTTATI
TITITG	TATTGGGACATTTAATTTTTTAC		GITATATTGCCACGGTGAT		GTACTTAGGTAAAGATGCTTATJ
TTTTTTGTATTACATTTTTATTGC	GLCATTTAATTTTTTAC		GTTATATTGCCACGGTGAT		GTACTTAGGTAAAGATGCTTAT
TTTTTTGTATTACATTTTTTATTGCC	ACATTTAATTTTTTAC		TTATATTGCCACGGTGAT		GTECTTAGGTAAAGATGCTTAT
TTTTTTGTATTACATTTTTTATTGCCGT	ACATTIAATTITTAC				GTACTTAGGTAAAGATGCTTATI
TTTTTTGTATTACATTTTTTATTGCCGT		ACAGAACTGGTAGAACAT			GTACTTAGGTAAAGATGCTTAT
TTTTTTGTATTACATTTTTTATTGCCGTGA	AATTTTTTAC	асадаастертараасатста		татсатааастиститтасассиса	
TITGTATTACATTTTTATTGCCGTGAGCTATT				TATGATAAAGTTTGTTTTAGACCTGA	
				TATGATAAAGTTTGTTTTAGACCTGA	
				GATAAAGTTTGTTTTAGACCTGA GATAAAGTGTGTTTTAGACCTGA	
				GATAAAGTTGTTTTAGACCTGA	
				GTTTGTTTTAGACCTGA	
					GTACTTAGGTAAAGATGCTT
					GTACTTAGGTAAAGATGCTTGT
					GTACTTAGGTAAAGATGCTTAT
	11				
	13				10

Reads paired-end (similar to mate-pair)


- The distance between the reads is known (length of the insert), with some experimental uncertainty


- Distance of insert depends of technology (454 or Illumina => 3-8 kb)

Contigs : group of overlapping reads, without gap

Scaffold : group of contigs order and in the same sens. Gap ("NNN") could existed and their length are known. Scaffolds exists only if a paired-ends (or mate pairs) sequencing was performed !

Mapped scaffolds : scaffolds mapped along a reference. Order, orientation and length of gaps are estimated, but not sure !

Finishing :

Mapping of reads along the assembled genome (or/and a reference) :

- help to correct the low quality/coverage areas
- Check the order of contigs
- Check the redundancy of contigs (false contigs or true repeat contigs like rRNA operons)
- Fill the gaps by extending the boundaries of each gap using ends of mapping reads
- Order (or reorder) contigs
- Desassemble some areas if they seem to be false