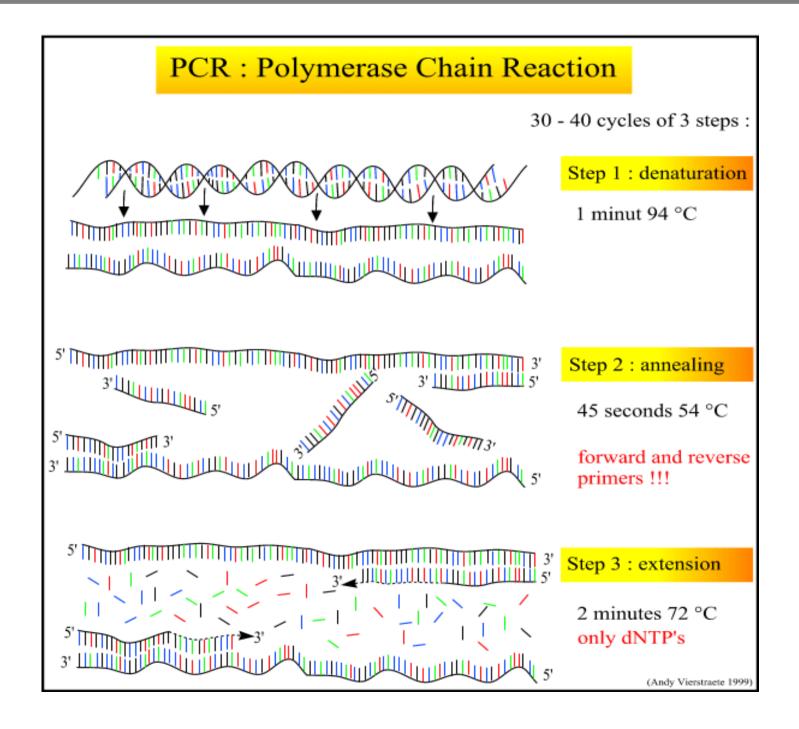
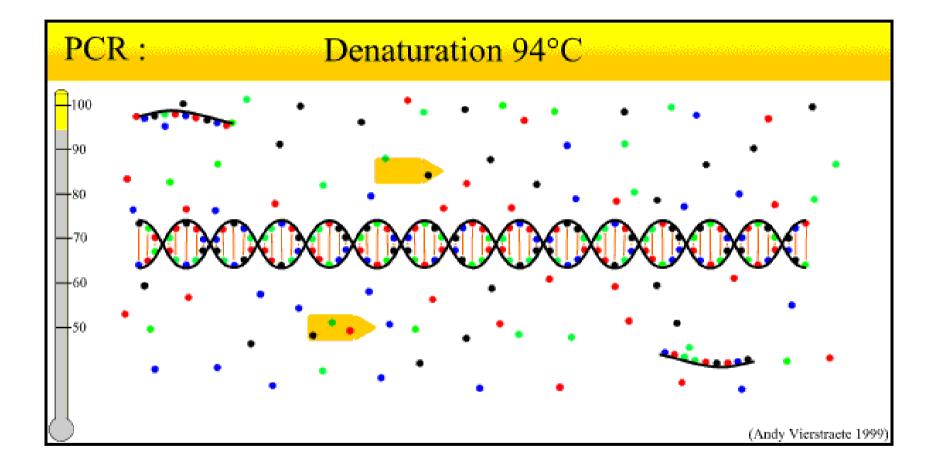
Oligomers design (primers and probes)

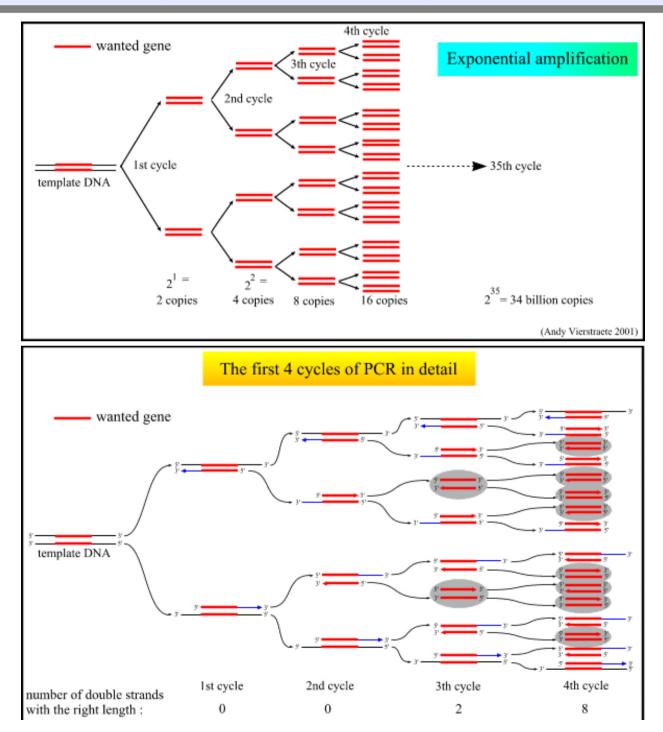
Bioinformatics teachings

http://bioinfomed.fr - Olivier Croce


* Use of PCR - Concept of primers and/or probes


* Sensibility, specificity and other thermodynamic constraints

* Examples of softwares used for oligomers design.


* Exercise : Searching of primers/probes for *Bacillus anthracis*, cya

Use of PCR - Concept of primers and/or probes

Use of PCR - Concept of primers and/or probes

Sensibility

- A melting temperature (Tm) in the range of 52 C to 65 C
- Absence of dimerization capability
- Absence of significant hairpin formation (>3 bp)
- Lack of secondary priming sites
- Low specific binding at the 3' end (ie. lower GC content to avoid mispriming)

Specificity

• Must be **only one** target site in the template DNA where the primer binds

=> the primer sequence shall be unique in the template DNA.

• No annealing site in possible contaminant sources, such as human, rat, mouse, unwanted bacteria, etc.

Length

• Primer length has effects on uniqueness and melting/annealing temperature.

=> the longer the primer, the more chance that it's unique

=> the longer the primer, the higher melting/annealing temperature.

- Length of primer has to be at least 15 bases to ensure uniqueness.
- Usually, primers of 17-28 bases long.

=> range varies based on if you can find unique primers with appropriate annealing temperature within this range

Base composition

- affects hybridization specificity and melting/annealing temperature.
- Random base composition is preferred.
- Avoid long (A+T) and (G+C) rich region if possible.

• Usually, average (G+C) content around 50-60% will give the right melting/annealing temperature for ordinary PCR reactions, and will give appropriate hybridization stability.

=> However, melting/annealing temperature and hybridization stability are affected by other factors (see later). Therefore, (G+C) content is allowed to change

Annealing Temperature (T_{anneal})

=> the temperature at which primers anneal to the template DNA. It can be calculated from T_m .

$$T_{anneal} = T_{m_{primer}} - 4^{\circ}C$$

Melting Temperature (Tm)

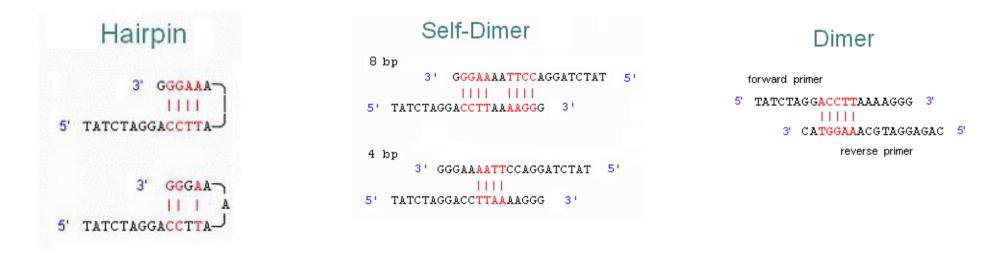
=> the temperature at which half the DNA strands are single stranded and half are double-stranded. Tm is characteristics of the DNA composition (ie. Higher G+C content DNA has a higher Tm due to more H bonds).

Basic : Marmur and Doty, 1962
$$Tm = 64.9 + 41.0 \times \left(\frac{yG + zC - 16.4}{wA + xT + yG + zC}\right)$$
Salt Adjusted : Howley et al., 1979 $Tm = 100.5 + 41.0 \times \left(\frac{yG + zC - 16.4}{wA + xT + yG + zC}\right) - \left(\frac{820.0}{wA + xT + yG + zC}\right) + 16.6 \log([Na^+])$ Nearest-neighbor thermodynamic : SantaLucia, 1998 $Tm = \frac{\sum (\Delta H_d) + \Delta H_i}{\sum (\Delta S_d) + \Delta S_i + \Delta S_{self} + R \times \ln \frac{C_T}{b}} + C_{Na^*}$

- Tm formula : http://www.basic.northwestern.edu/biotools/oligocalc.html

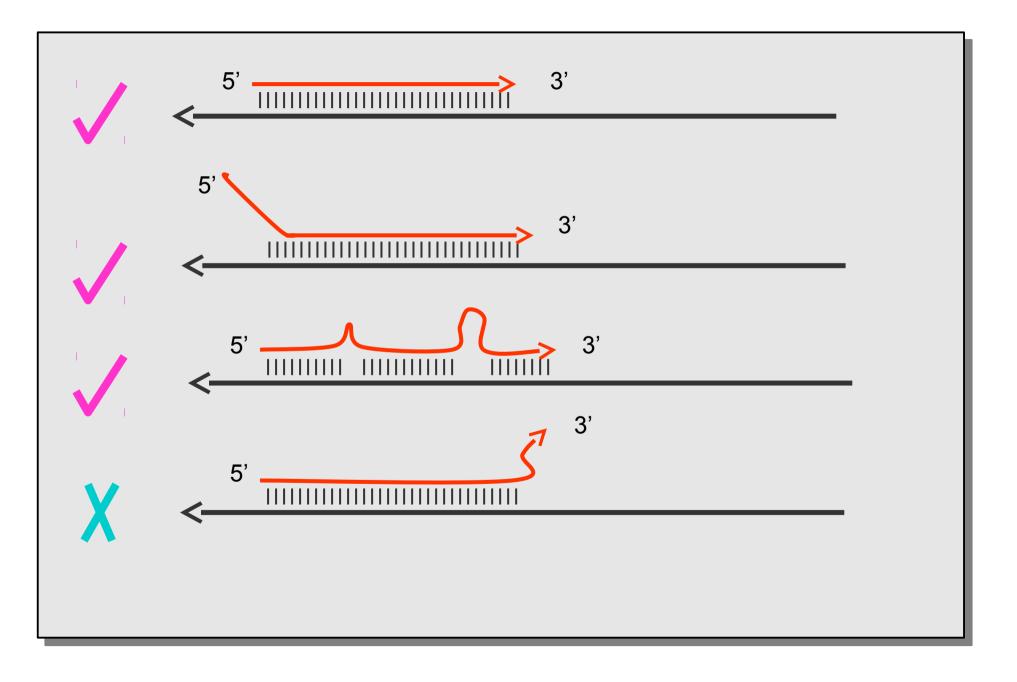
- or see "DNAmate" (many servers available, => google)

Primer Pair Matching


• Primers work in pairs – forward primer and reverse primer. Since they are used in the same PCR reaction, it shall be ensured that the PCR condition is suitable for both of them.

• One critical feature is their annealing temperatures, which shall be compatible with each other.

=> The maximum difference allowed is 3 °C. The closer their T_{anneal} are, the better.


Internal Structure (= secondary structure)

=> If primers can anneal to themselves, or anneal to each other rather than anneal to the template, the PCR efficiency will be decreased dramatically. They shall be avoided.

However, sometimes these 2° structures are harmless when the annealing temperature does not allow them to take form. For instance, some dimers or hairpins form at 30 °C while during PCR cycle, the lowest temperature only drops to 60 °C.

Sensibility, specificity and other thermodynamic constraints

Summary of required criteria

- Uniqueness: ensure correct priming site;
- Length: 17-28 bases. This range varies;

- Base composition: average (G+C) content around 50-60%; avoid long (A+T) and (G+C) rich region if possible;

- Optimize base pairing, in particular 3' extremity should have high stability
- Melting Tm between 55-80 °C are preferred;
- Assure that primers at a set have annealing Tm within 2 3 °C of each other.
- Minimize internal secondary structure: hairpins and dimmers shall be avoided.

Multiplex PCR

- Multiple primer pairs can be added in the same tube to do the PCR
- Good for amplifying multiple sites
- Application example: genome identification/ finishing
- Design difficulty

Difficulties:

- => Melting temperatures should be similar
- => No dimer formulation

Universal primers

Primers can be designed to amplify only one specific product.

Or, primers can also be designed to amplify multiple products.

=> "universal primers". For example, design primers to amplify all 16S genes of a given clade (genera, families, etc.).

Semi-universal primers

• Primers can be designed to amplify only a subset of template sequences from a large group of similar sequences.

For example, design primer to amplify HPV type 1 and type 6 gene, but not other types.

• Or, if a couple can not amplify all your set

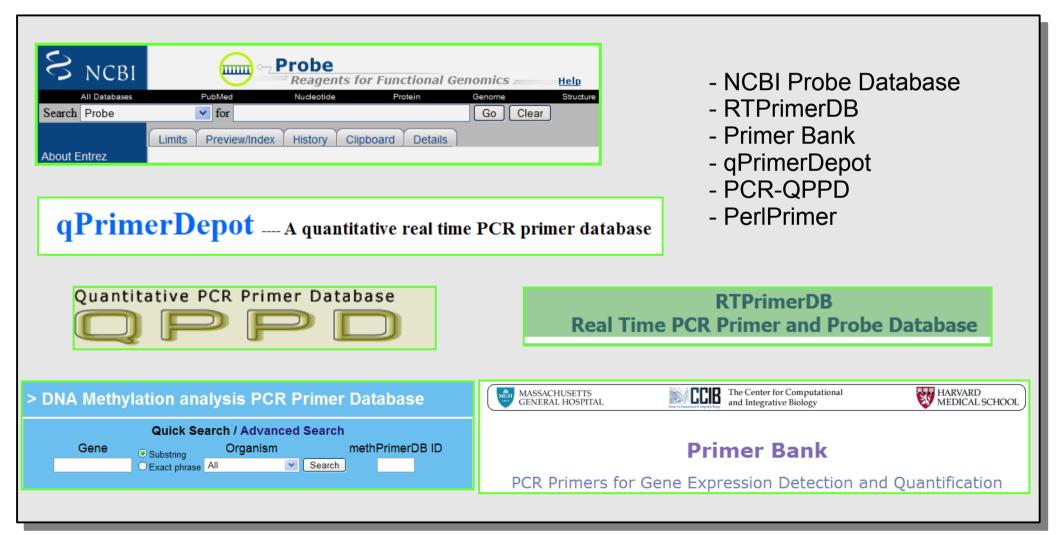
=> you may design > 2 couples to fulfill the set

Sensibility, specificity and other thermodynamic constraints

Strategy for a small set of sequences:

- Groups sequences into a set of "wanted sequences", and a set of "unwanted sequences"
- Align groups of sequences.

- Find the most conservative primers for "wanted sequences" and divergent for "unwanted sequences"

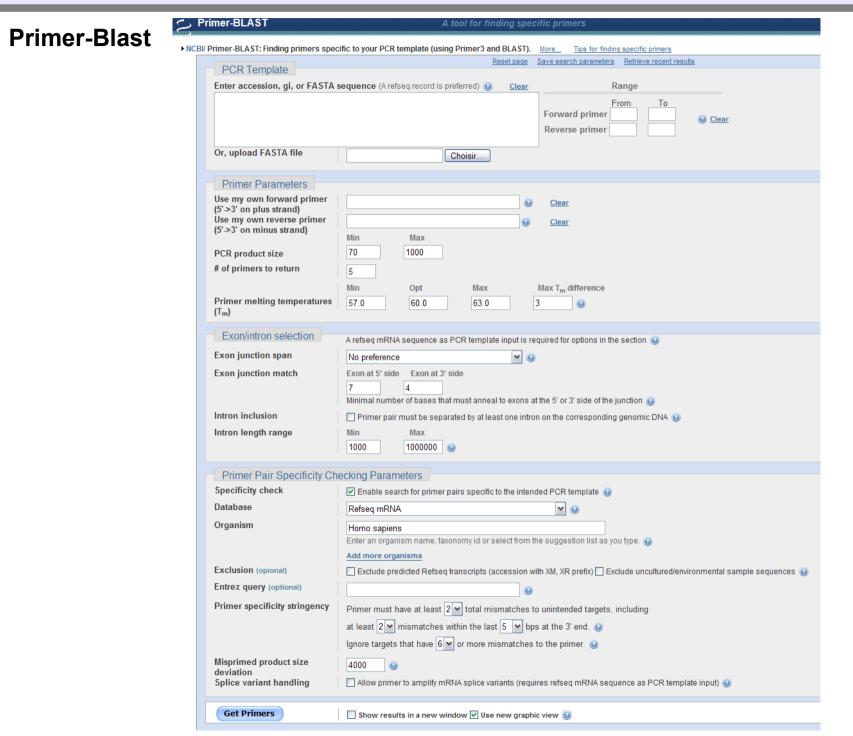

- Test forward and reverse primers to find the best pair in terms of thermodynamical constraints.
- Avoid hybridizations with unwanted sequences
 - compared alignment with your unwanted sequences set
 - or blast primers on a a larger set of unwanted sequences that you may construct
 - or Blast on nt-like database, and check for unwanted (not always very efficient...)

Strategy for a big set of sequences (classes or phyla) :

- Could be very problematic....

Before using software : do not reinvent the wheels !

- Search oligomers in publications
- Databases of primers


• Primer/probes design by a skill human beings is far better done by automatics softwares !

Some primer design softwares:

- Primer3 (http://frodo.wi.mit.edu/) many servers existing through the web => google
- Primer3Plus (similar as Primer3)
- PrimerZ
- PerlPrimer
- Vector NTI Advantage 10
- PrimerX
- Oligo (Life Science Software)
- GCG:(Accelrys)
- Others: GeneFisher, Primer!, PrimaClase, Codhop, Web Primer, etc.

Some primer checker softwares and Tm calculation softwares:

- PrimerBlast (http://www.ncbi.nlm.nih.gov/tools/primer-blast/)
- Oligoanalyzer (http://eu.idtdna.com/analyzer/applications/oligoanalyzer/)
- OHM (OligoHeatMap) (http://bioinfo.unice.fr)
- DNAMate (http://melolab.org/dnaMATE/tm-pred.html)
- BioMath (http://www.promega.com/techserv/tools/biomath/calc11.htm)

▼ Advanced parameters	
Primer Pair Specificity Checking Parameters	
Max number of Blast target	50000 🖌 🔞
sequences	
Blast expect (E) value	
Blast word size	
Max primer pairs to screen	1000 🗹 😡
Primer Parameters	No. Ort No.
PCR Product Tm	Min Opt Max
	Min Opt Max
Primer Size	15 20 25
	Min Max
Primer GC content (%)	20.0 80.0
GC clamp	
Max Poly-X	5 0
Max 3' Stability	9 0
Max GC in primer 3' end	5 0
Secondary Structure	O Use Thermodynamic Secondary Structure Alignments
Alignments	Warning: Thermodynamic Secondary Structure Alignments can be very slow.
	Primer Pair
Max Template Mispriming	12.00 24.00
	Any 3'
Max Self Complementarity	8.00 3.00
	Any 3'
Max Pair Complementarity	8.00 3.00
Excluded regions	0
Concentration of monovalent	
cations	
Concentration of divalent cations	1.5 @
Concentration of dNTPs	0.6
Salt correction formula	SantaLucia 1998 🕑 🕑
Table of thermodynamic	SantaLucia 1998 🔽 😡
parameters Annealing Oligo	50.0
Concentration	Primer binding site may not contain known SNP ()
SNP handling Repeat filter	
Repear inter	Automatic Avoid repeat region for primer selection by filtering with repeat database
Low complexity filter	✓ Avoid low complexity region for primer selection (9)
,,,,,,	
Internal hybridization oligo	parameters
Hybridization oligo	Pick internal hybridization oligo
	Min Opt Max
Hyb Oligo Size	18 20 27
	Min Opt Max
Hyb Oligo tm	57.0 60.0 63.0
	Min Opt Max
Hyb Oligo GC%	20.0 50 80.0

Exercice :

• Detection of organism using PCR :

Searching specific primers/probes for « Bacillus anthracis », gene « cya »

Main steps

- Build your sets of sequences (SRS, Acnuc, NCBI, Blast)
 - targets : homologues sequences of *Bacillus anthracis* cya
 - non-targets : closed sequences of *Bacillus anthracis* cya (Blastn ...)
- Get primers :

(1) existing primers : publications (using http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed), dedicaced databases

(2) design new ones (to be design using previous sequences sets).

- Check your primers (Blast, Oligo Heat Map, ...), and/or using alignments (Mega, ClustalW, Seaview...)