
Course: Introduction to Python

UNIVERSITE COTE D’AZUR
EUR ELMI

MASTER 1 EXPERTISE ECONOMIQUE

PROJECT

Submitted by :

Mariia PROTASOVA
James KENNEDY Supervised by:

Olivier CROCE,
Research Engineer - CNRS

Nice, 2022

Analysis of the impact of the COVID-19 pandemic
on the French airline industry using Python

 1

TABLE OF CONTENTS

INTRODUCTION .. 2

1. BRIEF DESCRIPTION OF THE TASK .. 2

2. INITIAL DATA ... 2

3. OUR PLAN .. 2

4. BEFORE USING THE CODE ... 3

5. THE CODE ... 3

6. OUTPUT AND COMMENTS ON THE RESULTS ... 7

 2

INTRODUCTION

Studying the impact of the COVID-19 pandemic on the world economy is an

important challenge. The coronavirus pandemic and the measures introduced to

prevent the spread of the virus have particularly affected the tourism and passenger

transport industries. Using Python, we want to analyze flight data from France in

July 2019, 2021, 2022 and draw conclusions about the impact of the pandemic on

this industry.

1. BRIEF DESCRIPTION OF THE TASK

In general, it was required to write a code that:

Ex. № 1:

1) compares the number of flights of each day in July 2021 and in July 2019;

2) compares the total number of flights in July 2022 and in July 2019;

3) shows the number of flights on the 14th of July of each year and compares it with

other days;

4) compares the number of flights for July 1 and 31 for each year;

Ex № 2:

5) calculates the minimum, the maximum and the average number of flights for each

year;

6) compares the min, the max and the mean;

7) BONUS: to draw a plot to demonstrate the data.

2. INITIAL DATA

The initial data (day, 2022, 2021, 2019) is presented in the

box on the right.

3. OUR PLAN

In order to complete these tasks, we created a plan:

• Read the task carefully

• Open the attached data and explore it

• Exercise 1

o Reorganize the data to be able to work with it

o Create reusable functions for comparing daily flights

and the sum of flights between years

 3

o Return an output of a function for comparing the number of flights

between given days

• Exercise 2

o Reorganize the initial data again to be able to complete the task.

o Find the mean, min and max using functions mean(), max(), min()

(import pandas).

o Use the The if-elif-else Chain to compare the results and find the

smallest (largest) mean.

o Use the The if-elif-else Chain to find the year with the highest and the

smallest number of flights.

• Bonus: Plot

o Decide on the shape(s) of the graphic representation

o Build a line chart using plt.plot, adjust the plot (colors, size and labels)

(import matplotlib)

o Build a bar chart using plt.bar, adjust the plot (colors, size and labels)

• #Comment all lines of the code

• Write a report commenting the results

TECHNICAL PART

4. BEFORE USING THE CODE

Before using our code, you need to:

- make sure that the library Pandas is installed (otherwise enter “pip install

pandas” on the terminal)

- make sure that the library Matplotlib is installed (otherwise enter “pip install

matplotlib” on the terminal)

- make sure that the data file is placed in the same folder as the code.

5. THE CODE

Dear User, our program has been specifically written to answer the questions

about COVID impact on the flight industry. However, it may be reutilized to analyze

any data that has the similar structure. Please, refer to the section Initial Data above.

Using our program doesn’t require you to have any technical skills or knowledge of

programming in order to be able to get the answers you’re looking for. By default,

once you run the program, you’ll automatically get the answers to the questions that

we’ve outlined above. However, if you want to explore the other possibilities or

 4

analyze a different dataset with a similar structure, then you will need to install the

proper software (for example, PyCharm) to be able to change the parameters in the

functions and get the results that you’re looking for.

Please read carefully all the comments we made along the code. They’ll

provide you with precious information about its functions, without you needing to

know how to program. Here we comment again some of the functions we made.

First of all, we import our data, read it and assign it to the variable “data”. You

need to make sure that your dataset is in the same folder as your Python program

and specify the file’s name between the brackets.

After reading the dataset, we put each line containing values for three years in

a list by removing any unnecessary gaps between lines. We also make sure that our

list doesn’t have any empty elements by removing everything with a zero length. As

a final step, one by one, we split the strings inside the old list, assigning the elements

of a particular string to the element_new, which is going to be one of the lists inside

a clean dataset. As a result, we get a list of 31 lists, where each list corresponds to a

day of July and contains 4 elements : [day, flights of a corresponding day in 2022,

2021, 2019].

Because the Initial Dataset doesn’t have any headers, we create a list “year”

to specify the years for analysis. The 0 element of the list may take any value, it’s

there for technical reasons, the elements from 1 to 3 should correspond to the years

of the dataset. By default, year has the following structure [1, 2022, 2021, 2019].

If you want to use the program on a different dataset, make sure to change the

values in this list to the years you want to analyze. This list is used for automatic

referencing.

Finally, we can analyze the data. For this, we create a function that allows us

to compare the number of flights of the same day for two different years.

col1 and col2 take values between 1 and 3 which correspond to years from

2022 to 2019 respectively (2022 = 1, 2021 = 2, 2019 = 3).

brek takes values 0 and 1. Introducing this parameter allows us to reuse the

same function to answer two different questions.

 5

• brek=1 means "display only the first day of the month where the number of

flights for the year [col1] was higher than the number of flights for the same day in

the year [col2]".

• brek=0 means "display all days of the month where the number of flights

for the year [col1] was higher than the number of flights for the same day in the year

[col2]".

For example, to show what was the first day in 2021 when the number of

flights was higher than in 2019, you just specify the parameters:

,

where col1 = 2 (2021), col2 = 3 (2019), brek=1.

 To make our code easier for the next tasks, we reorganize the data once again,

making sure that all the days of July are in one list, while the number of flights for

every day of July in a given year is in a separate list. That way, we get a list of four

lists with a following structure : [days of July, daily flights in 2022, 2021, 2019].

Thank to this data representation, we create a function that can easily calculate

the sum of flights in July in a given year just by adding all the values of a list

corresponding to that year and compare it to the sum of flights in a different year.

The function has two parameters : col1 and col2 take values between 1 and 3 which

correspond to years from 2022 to 2019 respectively (2022 = 1, 2021 = 2, 2019 = 3).

For example, to compare the sum of flights in July 2022 and 2019, you simply

call the function by inserting the corresponding parameters :

The last part of the first exercise concerns building a function that returns a

number of flights on a given day of July in a chosen year and reutilizing it later on

for confirming different hypothesis.

The function vols_jours() has two parameters :

year goes from 1 to 3 (where 1 = 2022, 2 = 2021, 3 = 2019) in that order;

day goes from 0 to 30 which is equivalent to a range from the 1st to 31st July

of a given year.

To see if the number of flights on the 14th of July which is the Bastille Day

(The French National Day) is usually lower than on the other days, we print the sum

of the times when the number of flights was lower than on the 14th of July each year.

It is not a function, so it prints a response only for the 14th of July.

,

where vols_jour(1, 13) corresponds to the 14th of July 2022 and short_list[1]

corresponds to the year 2022.

 6

 We follow the same idea to test the hypothesis that the number of flights at

the beginning of the month is usually higher, but this time we compare the first day

and the last day each year. It is not a function, so it prints a response only for the

beginning of the month and the end of the month.

,

where vols_jour(1, 0) corresponds to the 1st July 2022 and vols_jour(1,30)

corresponds to the 31st July 2022.

The second part (exercise 2) of our code deals with calculating the means for

each year, comparing them, displaying the largest and the smallest means, as well as

displaying for each year a day of July with the smallest and the largest number of

flights. To do the task, we could have used the same list of lists dataset, but we

decided to utilize the Pandas library to demonstrate how much easier it is to

manipulate the same dataset with the help of a third-party library and to get the

results much faster.

First of all, we import the Pandas library and read the dataset line by line. We

specify that our initial dataset doesn’t have a header (header=None), assign each

element of a line to a separate column by specifying that the elements should be

separated by a simple space (sep=“ ”), eventually we also name the columns for a

convenient data accessing.

If you want to use the program on a different dataset, make sure to rename the

columns according to the years you want to analyze. This header is used for

automatic referencing.

To calculate the minimum, the maximum and the mean, all we need to do is

to specify the name of the column that contains the number of flights in a particular

year, to use a command with a name of the statistics as well as to round up the result.

For example, to get the mean number of flights in 2022, we would use the following

command : print(round(lines["2022"].mean()). In our case, the program calculates

and displays all the required statistics (min, max, mean) for three years.

To find the largest and the smallest means we created two functions

lmean(m22, m21, m19) and smean(m22, m21, m19) that compare the means and

display the result. We could have achieved the same result by assigning the means

to a list and displaying the largest element of the list, which would give us a much

shorter code. But we decided not to combine different libraries.

m22, m21, m19 correspond to the previously calculated mean number of

flights in 2022, 2021, 2019. The values have already been assigned to the variables

and the function will automatically display the largest and the smallest result as well

as the corresponding year.

Finally, we create two variables (minmin, maxmax) that contain the smallest

and the largest number of flights in the given years.

 7

We compare these numbers with the smallest and the largest number of flights

in a particular year. Once we have a match between the smallest (the largest) number

of flights and a particular year, we display the corresponding year. It happens

automatically based on your dataset, so you don’t have to modify the code.

The last part of the analysis program plots two different graphs for a visual

representation of the dataset. It automatically creates the graphs for three years based

on a given data and doesn’t require you to make any modifications.

6. OUTPUT AND COMMENTS ON THE RESULTS

The final output is presented below.

 8

Looking at the dynamics, the French airline industry is gradually recovering.

However, the number of flights in July 2022 has not reached the pre-pandemic level

(July 2019). This is evidenced by the fact that the total number of flights in July

2019 exceeds the total number of flights in July 2022, as well as the day with the

highest number of flights was in 2019.

The statistics show that there are usually fewer flights on July 14 than on other

days in July. We can assume that the number of flights is lower because of the day

off (fewer people working and servicing airports), and that people tend to spend the

national holiday in France (lower demand).

An analysis of the number of flights on the 1st and 31st of July showed the

following results. In 2022 and 2019, there were more flights at the beginning of the

month than at the end. However, in 2021, there were more flights on the last day of

the month than on the first day.

Based on the three years it is impossible to unequivocally assert the existence

of any pattern, but we can assume that the anomaly in 2021 is explained by the

influence of the coronavirus pandemic.

Finally, the graphical representation of the dataset below allows us to

succinctly sum up our results in a simple, yet informative way, making it easier for

anyone to see a full picture with just a few lines.

 9

	title.pdf (2).pdf
	KennedyProtasovaProject.pdf
	INTRODUCTION
	1. BRIEF DESCRIPTION OF THE TASK
	2. INITIAL DATA
	3. OUR PLAN
	4. BEFORE USING THE CODE
	5. THE CODE
	6. OUTPUT AND COMMENTS ON THE RESULTS

